
Design and Analysis of Algorithms
Introduction to Algorithms

1 A Taste of Algorithm Design
Return on Investment (ROI) Problem
Single Machine Scheduling (SMS) Problem

2 A Taste of Algorithm Analysis
Sorting Problem

3 A Taste of Complexity Theory
Travelling Salesman Problem
Knapsack Problem

1 / 44



What is Algorithm?

“An algorithm is a finite, definite, effective procedure, with some input and some
output.”

– Donald Knuth

2 / 44



1 A Taste of Algorithm Design
Return on Investment (ROI) Problem
Single Machine Scheduling (SMS) Problem

2 A Taste of Algorithm Analysis
Sorting Problem

3 A Taste of Complexity Theory
Travelling Salesman Problem
Knapsack Problem

3 / 44



Return on Investment (ROI) Problem

Problem. m coins to invest n projects.
profit function fi(x) denotes the return on investing project i with x coins,
i = 1, 2, . . . , n.

How to maximize the overall return?
Instance example: 5 coins, 4 projects:

x f1(x) f2(x) f3(x) f4(x)

0 0 0 0 0

1 11 0 2 20

2 12 5 10 21

3 13 10 30 22

4 14 15 32 23

5 15 20 40 24
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Modeling

Input. n, m, fi(x), i ∈ [n], x ∈ {0, . . . ,m}

Solution. vector ⟨x1, x2, . . . , xn⟩, xi is the num of coins invested on project i satisfying:

objective function: max
n∑

i=1

fi(xi)

constraints:
n∑

i=1

xi = m,xi ∈ {0, . . . ,m}
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Brute-Force Algorithm: Universal Algorithm for All Problems

Definition 1 (Brute-Force Algorithm)
A programming style that does not use any shortcuts to improve performance, but
instead relies on sheer computing power to try all possibilities until the solution to a
problem is found.

∀ n-dimension vector ⟨x1, x2, . . . , xn⟩ satisfying

x1 + x2 + · · ·+ xn = m,xi ∈ {0, . . . ,m}

compute the sum of return

f1(x1) + f2(x2) + · · ·+ fn(xn)

find the solution with highest return

6 / 44



Brute-Force Algorithm: Universal Algorithm for All Problems

Definition 1 (Brute-Force Algorithm)
A programming style that does not use any shortcuts to improve performance, but
instead relies on sheer computing power to try all possibilities until the solution to a
problem is found.

∀ n-dimension vector ⟨x1, x2, . . . , xn⟩ satisfying

x1 + x2 + · · ·+ xn = m,xi ∈ {0, . . . ,m}

compute the sum of return

f1(x1) + f2(x2) + · · ·+ fn(xn)

find the solution with highest return

6 / 44



Example

x f1(x) f2(x) f3(x) f4(x)

0 0 0 0 0

1 11 0 2 20

2 12 5 10 21

3 13 10 30 22

4 14 15 32 23

5 15 20 40 24

x1 + x2 + x3 + x4 = 5

s1 = ⟨0, 0, 0, 5⟩, v(s1) = 24

s2 = ⟨0, 0, 1, 4⟩, v(s2) = 25

s3 = ⟨0, 0, 2, 3⟩, v(s3) = 32

. . .

s56 = ⟨5, 0, 0, 0⟩, v(s56) = 15

Solution: s = ⟨1, 0, 3, 1⟩
Highest return: 11 + 30 + 20 = 61
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Efficiency of Brute-Force Algorithm

Each possible solution vector is a non-negative integer solution of equation

x1 + x2 + · · ·+ xn = m

How to estimate the number of possible ⟨x1, x2, . . . , xn⟩
solution can be expressed as 0-1 sequence with the following format: # 1 = m, #
0 = n− 1

1 . . . 1︸ ︷︷ ︸
x1

0 1 . . . 1︸ ︷︷ ︸
x2

0 . . . 0 1 . . . 1︸ ︷︷ ︸
xn

n = 4, m = 7

candidate solution ⟨1, 2, 3, 1⟩ corresponds to:

1 0 1 1 0 1 1 1 0 1
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Efficiency of Brute-Force Algorithm
The number of such sequences is an exponential function of input size

C(m+ n− 1, n− 1) =
(m+ n− 1)!

m!(n− 1)!

= Ω((1 + ϵ)m+n−1)

An alternative reasoning is easier to get the result: calculate the number of positive
integer solutions

y1 + y2 + · · ·+ yn = m+ n

Brute-force algorithm is easy to design when the solution space is enumerable, and
always correct, but not efficient when the solution space is huge.
In most time, we need to design “smart” algorithm.
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Single Machine Scheduling Problem

Problem. n tasks, each task i requires time ti to process (without waiting), refereed to
minimum processing time. We have to assign n tasks on a single machine.

flowtime of task i: starti = 0, endi − starti ≥ ti

Goal. find an assignment such that the total flowtime of all n tasks is shortest.
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Modeling

Input.
task set: S = {1, 2, . . . , n}
processing time of task j: tj ∈ Z+, j ∈ [n]

Output. Schedule I, a permutation of S, i.e., (i1, i2, . . . , in)
Objective function. the flowtime of I:

t(I) =

n∑
k=1

(n− k + 1)tik

Solution. I∗ — minimize t(I∗)

t(I∗) = min{t(I) | I ∈ Permutation(S)}
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Method: Greedy Algorithm

Greedy algorithm is a kind of heuristic algorithms
originated from your intuition
follow your heart

Strategy. shortest processing time (SPT) first
Algorithm. sort the processing time in an increasing order, then process them
sequentially
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Concrete Instance

task set S = {1, 2, 3, 4, 5}
minimum processing time: t1 = 3, t2 = 8, t3 = 5, t4 = 10, t5 = 15

sort (3, 8, 5, 10, 15) in an increasing order ; Solution: 1, 3, 2, 4, 5

3 5 8 10 15

0 3 8 16 26 41

overall flowtime

t = 3 + (3 + 5) + (3 + 5 + 8) + (3 + 5 + 8 + 10)

+ (3 + 5 + 8 + 10 + 15)

= 3× 5 + 5× 4 + 8× 3 + 10× 2 + 15

= 94
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Proof of Correctness

Correctness. We have to ensure greedy algorithm yields the optimal solutions for all
instances

Proof. If not ⇒ ∃ optimal schedule I∗ with at least one reverse order, i.e., task i and j
are adjacent but ti > tj . Switch task i and j in I∗ ; schedule I ′

I∗ ti tj

I ′ tj ti

flowtime comparison: t(I ′)− t(I∗) = tj − ti < 0 ⇒ contradicts to the optimal
property of I∗
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Heuristics is Not Always Correct

Algorithm design cannot entirely relies on heuristic. Below is a counterexample that
heuristic fails.
Knapsack problem: four items need to insert into a knapsack, with values and weights
as below:

label a b c d

weight wi 3 4 5 2

value vi 7 9 9 2

the knapsack weight limit is 6.

How to choose items to maximize the total values in the backpack?
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Failure of Greedy Algorithm

Greedy strategy. highest value-weight ratio comes first, with weight limit 6
sort vi/wi in a descending order: a, b, c, d

7

3
>

9

4
>

9

5
>

2

2

greedy solution: {a, d}, weight = 5, value = 9

better solution: {b, d}, weight = 6, value = 11
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Summary: Steps of Algorithm Design

1 Modeling. Give formal description of input, output and objective function

2 Design. Choose what algorithms? How to describe it?

3 Prove. Is the algorithm correct? e.g. yield optimal solution for all instances.
If so, how to prove it?
If not, can you find an counterexample?

4 Evaluation. Efficiency: computation cost (time) and communication cost (space)

An alternative efficiency metric — the monetary cost to run the protocol on
a cloud computing service. This new metric takes both computation cost and
communication cost into consideration.
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Insertion Algorithm

Insertion sort iterates, consuming one input element each iteration, and growing a
sorted output list longer and longer.

At each iteration, insertion sort removes one element from the input data, finds
the location it belongs within the sorted list, and inserts it there.
It repeats until no input element remains.

5 7 1 3 6 2 4input

1 3 5 6 7 2 4middle state

1 2 3 5 6 7 4after inserting 2
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Demo of Insertion Sort

input 5 7 1 3 6 2 4

beginning 5 7 1 3 6 2 4

insert 7 5 7 1 3 6 2 4

insert 1 1 5 7 3 6 2 4

insert 3 1 3 5 7 6 2 4

insert 6 1 3 5 6 7 2 4

insert 2 1 2 3 5 6 7 4

insert 4 1 2 3 4 5 6 7
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Analysis of Insertion Sort

Complexity analysis
worst-case: O(n2) comparison and swap
best-case: O(n) comparison and 0 swap
average-case: O(n2) comparison and swap

replace array with linked list: reduce swap operation in each round to constant time

Advantages:
simple: Jon Bentley shows a three-line C version
adaptive: efficient for data sets that are already substantially sorted
stable: does not change the relative order of elements with equal keys
in-place: only require O(1) additional memory for swap
online: can sort a data set as it receives it
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Analysis of Insertion Sort

Jon Bentley’s three-line C version of insertion sort highlights the algorithm’s simplicity,
which is presented as follows:

Additional memory can be removed via the following trick
a := a+ b; b := a− b; a := a− b.

Essence: ensure each intermediate state hold shares of original values
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Bubble Sort

Bubble sort: pass through the list — compares adjacent elements and swaps them if
they are in the wrong order.

the pass is repeated until the list is sorted
named for the way smaller or larger elements “bubble” to the top of the list
(another name is sinking sort)

before pass

5 1 6 2 8 3 4 7

one pass

1 5 2 6 3 4 7 8
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Demo of Bubble Sort

input 5 8 1 3 6 2 4 7

pass 1 5 1 3 6 2 4 7 8

pass 2 1 3 5 2 4 6 7 8

pass 3 1 3 2 4 5 6 7 8

pass 4 1 2 3 4 5 6 7 8

pass 5 1 2 3 4 5 6 7 8
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Analysis of Bubble Sort

Complexity analysis
worst-case: O(n2) comparison and swap
best-case: O(n) comparison and O(1) swap
average-case: O(n2) comparison and swap

Advantages. simple and stable
Disadvantages. inefficient, only for education purpose
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Quick Sort

QuickSort is a divide-and-conquer algorithm:
1 Pick an element, called a pivot, from the array.
2 Partitioning: reorder the array to 3 parts according to the pivot

low sub-array: elements smaller than the pivot
high sub-array: elements larger than the pivot
the pivot is in its final position

equal values can go either way (or stay in the middle)
3 Recursively apply the above steps to the sub-arrays.
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The Invention of QuickSort

[FH71] Proof of a Recursive Program: Quicksort

Figure: Tony Hoare

invent in 1959 in Moscow State University Soviet Union, where he studied machine
translation under Andrey Kolmogorov
Most significant works: QuickSort and QuickSelect, Hoare logic, Communicating
Sequential Processes (CSP) for concurrent processes
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One Recursive Round of QuickSort

How to partition: two pointers trick
left (resp. right) pointer points to element bigger (resp. smaller) than pivot
cross happen ; partition finishes

input 5 8 1 3 6 2 4 7

1st swap 5 4 1 3 6 2 8 7

2nd swap 5 4 1 3 2 6 8 7

cross happens

partition 2 4 1 3 5 6 8 7

sub
problem 4 1 3 2 5 6 8 7
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Analysis of Quick Sort

Complexity analysis

worst-case: O(n2) comparison and swap (think about when?)
totally ordered (no swap is needed) or unordered

best-case: O(n logn) comparison and O(1) swap
average-case: O(n logn) comparison and swap

Advantages
quick: gained widespread adoption, e.g., (i) in Unix as the default library sort
subroutine; (ii) it lent its name to the C standard library subroutine qsort; (iii) in
the reference implementation of Java.

Properties
non-stable
pivot-choice affects performance
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Merge Sort

Merge sort is also a divide-and-conquer algorithm:
divide the unsorted list into n sublists, each containing one element (a list of one
element is considered sorted).
repeatedly merge sublists to produce new sorted sublists until there is only one
sublist remaining. (this will be the sorted list.)

Canonical case n = 2k

Figure: John von Neumann
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Demo of Merge Sort

input 5 8 1 3 6 2 4 7

1st merge 5 8 1 3 2 6 4 7

2nd merge 1 3 5 8 2 4 6 7

3rd merge 1 2 3 4 5 6 7 8
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Analysis of Merge Sort

Complexity analysis
worst-case, best-case, average-case: O(n logn) comparison
space: O(n) total with O(n) auxiliary (not in-place)

Advantages
quick: (i) Linux kernel for linked list; (ii) Android platform; (iii) default sort
algorithm in python and Java

Property
stable
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Comparisons Among Sorting Algorithms

Algorithm worst case best case average case stable
insertion sort O(n2) O(n) O(n2) yes
bubble sort O(n2) O(n) O(n2) yes
quick sort O(n2) O(n logn) O(n logn) no
merge sort O(n logn) O(n logn) O(n logn) yes
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Complexity Analysis

Which algorithm performs best? How to
evaluate it?
Can we find better sorting algorithm?

n2

n logn

?

insertion sort
bubble sort
quick sort

merge sort

better lower bound
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1 A Taste of Algorithm Design
Return on Investment (ROI) Problem
Single Machine Scheduling (SMS) Problem

2 A Taste of Algorithm Analysis
Sorting Problem

3 A Taste of Complexity Theory
Travelling Salesman Problem
Knapsack Problem
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Travelling Salesman Problem (TSP)

Problem. Given n cities and the distances between each pair of cities, what is the
shortest possible route that visits each city and returns to the origin city?

c3

c1

c2 c4

5

6 3

10
9

9

36 / 44



Formalization

Input. Finite set of cities C = {c1, c2, . . . , cn}, distance d(ci, cj) = d(cj , ci) ∈ Z+,
1 ≤ i < j ≤ n.

Solution. A permutation of 1, 2, . . . , n, a.k.a. k1, k2, . . . , kn such that:

min
{

n−1∑
i=1

d(cki , cki+1
) + d(ckn , ck1)

}

Can the objective function be simpler?

use modular n expression — 0, 1, . . . , n− 1

min
{

n−1∑
i=0

d(cki , cki+1
)

}
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About TSP

TSP (first formulated in 1930) is the most intensively studied problems NP-hard
problem in combinatorial optimization and theoretical computer science.

TSP is used as a benchmark for many optimization methods. Though TSP is
computationally difficult, many heuristics and approximated algorithms are known.

some instances with tens of thousands of cities can be solved completely
even problems with millions of cities can be approximated within a small fraction
of 1%.

TSP has several applications
in its purest formulation: planning, logistics, and the manufacture of microchips
slightly modified: DNA sequencing
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Knapsack Problem

Given n items, each with a weight and a value, determine the number of each item to
include in a collection so that the total weight is less than or equal to a given limit W
and the total value is as large as possible.

name: someone who is constrained by a fixed-size knapsack and must fill it with
the most valuable items
0-1 variant: for each item, include or not
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Formalization

Solution. vector ⟨x1, x2, . . . , xn⟩ over {0, 1}n, xi = 1 iff item i is included

objective function: max
n∑

i=1

vixi

constraint:
n∑

i=1

wixi ≤ W,xi ∈ {0, 1}, i ∈ [n]
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About Knapsack Problem

Knapsack (since 1897) often arises in resource allocation where the decision makers
have to choose from a set of non-divisible projects or tasks under a fixed budget or
time constraint, respectively. It is NP-complete problem.

Hardness of the knapsack problem depends on the input instances.
one theme in research is to identify “hard” instances: identify what properties of
instances might make them more amenable than their worst-case NP-complete
hardness suggests
application in public-key cryptography systems, e.g., the Merkle-Hellman
knapsack cryptosystem.

The basic problem is a one-dimensional (constraint) knapsack problem
a multiple constrained problem could consider both the weight and volume of
knapsack
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NP-hard Problem

NP(non-deterministic polynomial-time)-hardness is a class of problems that are
informally “at least as hard as the hardest problems in NP”
an efficient algorithm for a NP-hard problem implies efficient algorithms for all
NP problem

No “efficient” algorithms found yet:
complexity of known algorithm are at least exponential function on input size
no one can prove the “non-existence” of efficient algorithms for those problems

Thousands of NP-hard problems, widely spreads in all areas.
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Summary

The significance of algorithm
Algorithm evaluation criteria

Efficient: low time complexity & space complexity
Correct: yield optimal solution for all instances

The Scope of Algorithm
Design technique (exemplified by SMS and ROI)

modeling ; find an algorithm
proof ; prove the correctness

Complexity analysis (exemplified by sorting problem)
calculate the number of basic operations

Complexity theory (TSP and Knapsack)
complexity classification
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Reference I

M. Foley and C. A. R. Hoare.
Proof of a recursive program: Quicksort.
Comput. J., 14(4):391–395, 1971.
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